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Charcot-Marie-Tooth neuropathy type 1C (CMTIC) is an autosomal dominant demyelinating peripheral neuropathy
caused by missense mutations in the small integral membrane protein of lysosome/late endosome (SIMPLE) gene. To
investigate the prevalence of SIMPLE mutatiens, we screened a cohort of 152 probands with various types of demyeli-
nating or axonal and pure motor or sensory inherited neuropathies. SIMPLE mutations were found only in CMT1
patients, including one G112S and one W116G missense mutations. A novel 1741 polymorphism was identified, yet no
splicing defect of SIMPLE is likely. Haplotype analysis of STR markers and intragenic SNPs linked to the gene dem-
onstrated that families with the same mutation are unlikely to be related. The clustering of the G112S, T115N, and
W116G mutations within five amino acids suggests this domain may be critical to peripheral nerve myelination. Elec-
trophysiological studies showed that CMT1C patients from six pedigrees (n = 38) had reduced nerve conduction ve-
locities ranging from 7.5 to 27.0m/scc (peroneal). Two patients had temporal dispersion of nerve conduction and irreg-
ularity of conduction slowing, which is unusual for CMT1 patients. We report the expression of SIMPLE in various cell

types of the sciatic nerve, including Schwann cells, the affected cell type in CMT1C.
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Charcot—-Marie~Tooth neuropathy type 1 (CMT1) in-
cludes a large group of inherited disorders characterized
by peripheral nerve demyelination affecting both motor
and sensory nerves.' The natural history of CMT1 is a
slowly progressive distal muscle weakness and atrophy
in the upper and lower limbs with loss of sensation.’
Hallmarks of CMTT1 include reduced nerve conduction
velocities (NCVs) and nerve biopsies that display “on-
ion bulb” formation reflecting repeated cycles of demy-
elination followed by remyelination.

To date, five genes have been identified that, through
mutation, cause subtypes of CMT1> (sec hup://
molgen-www.uia.ac.be/CMTMutations/). Recently, link-
age for CMT type 1C to chromosome 16p13.1° was
established, and missense murtations (G112S, T115N,

and W116G) in the small integral membrane protein of
lysosome/late endosome gene (SIMPLE) were implicated
as being causal for this disorder.

The SIMPLE gene (GenBank AB034747) consists of
four exons and encodes a protein with a calculated mo-
lecular weight of 17.1kDa. The protein possesses a pu-
tative membrane association domain flanked by two
putatlve CXXC motifs (high-affinity zinc binding mo-
tifs).* The N terminus of SIMPLE possesses two PPXY
motifs (WW domain binding motif)® that have been
shown to interact with Nedd4, an E3 ubiquitin ligase
that plays a role in ubiquitinating membrane proteins.®
Ubiquitination, among other functions, has been iden-
tified as a signal for endocytosis and sorting to the ly-
sosome for degradation.””® We identified an additional
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motif in the N terminus of SIMPLE known as a P(S/
T)AP domain.”'® This domain functions to bind
TSG101, a class E vacuolar sorting protein that facili-
tates protein sorting to the lysosome via multivesicular
bodies (MVBs). The subcellular localization and pro-
tein binding domains of SIMPLE suggest a role in
ubiquitin-mediated lysosomal sorting.

In this study, we sought to discover new mutations
in SIMPLE in patients with CMT1 as well as other
demyelinating neuropathies and to correlate these mu-
tations with clinical data. We also sought to character-
ize the expression of SIMPLE in various cell types of
the peripheral nerve and particularly Schwann cells,
which are affected in CMT1C.

Patients and Methods

Patients

Informed consent was obtained from all participants accord-
ing to the ethical committee of the participating Universities
and the Declaration of Helsinki. A total of 152 persons hav-
ing various forms of inherited peripheral neuropathy were
studied from three subject-tiers for prior gene analysis and
geographic location. The first tier of 63 individuals of gen-
eral European descent consisted of 17 with CMT type 1, 19
with CMT type 2, 5 with intermediate CMT, 8 with CMT
type unclassified, 8 with hereditary motor neuropathy, and 6
with hereditary sensory neuropathy. These individuals were
taken from unmapped pedigrees and were known to lack the
CMTIA duplication and mutations in PMP22, MPZ,
GJB1, PERIAXIN (PRX), EGR2, the neurofilament light
polypeptide chain (NEEL),"" myotubularin-related protein
2 gene (MTMR2),'? and ganglioside-induced differentiation-
associated protein 1 gene (GDAP1)."> The second tier of 38
Bulgarian patients consisted of 12 with CMT type 1, 12
with CMT type 2, 4 with intermediate CMT, and 10 with
CMT type unclassified but excluded for the CMTIA dupli-
cation on chromosome 17p11.2. The third tier was 50
CMTT1 patients from the United States who had been ex-
cluded for the CMT1A duplication on 17p11.2. In addition,
we examined a three-generation CMT1 pedigree of Ukrai-
nian origin (K1552) in which a proband had tested negative
for the CMTI1A duplication and for mutations in the GBI
gene. All patients were examined by a neurologist to docu-
ment their features at the clinical and electrophysiological
levels.

Charcot—Marie—Tooth Neuropathy Type 1C Subjects
CMTIC pedigrees PN282, K1552, and K1910, which were
of Belgian, Ukrainian, and English descent, respectively, are
shown in Figure 1. Affected individuals met widely accepted
criteria for CMT including distal muscle weakness and atro-
phy, depressed deep tendon reflexes, and sensory impair-
ment. ' Pedigrees K1550, K1551, and K2900 have been de-
scribed previously. '

Mutational Analysis
Tortal blood samples were obtained by venipuncture for ex-
traction of high molecular weight DNA as described previ-

714 Annals of Neurology Vol 55 No 5  May 2004

ously' and used as a template for polymerase chain reaction
(PCR). PCR primers used to amplify exon 2 through 4 of
the SIMPLE gene have been described previously.'> Direct
sequence analysis was performed on amplified fragments us-
ing the ABI PRISM Big Dye Terminator Cycle Sequencing
Ready Reaction Kit (Applied Biosystems, Foster City, CA),
and chromatograms were generated on Applied Biosystems
High Through-Put Capillary Electrophoresis sequencers
available at the participating institutions in Seaule and Ant-
werp.

Microsatellite Analysis

Polymorphic markers used in this study (see Fig 1) were
from the Généthon human generic linkage map.'” PCR am-
plicons were detected using 6-FAM (6-carboxy-fluorescein)
fluorescence sense primers obtained from Applied Biosys-
tems.'” After capillary electrophoresis of the PCR products
on an Applied Biosystems 3730 DNA Analyzer (Applied
Biosystems), the results were analyzed using GeneScan soft-
ware (Applied Biosystems). The possible haplotypes were
constructed manually and exact allele lengths are given.

Electrophysiological Examination

Standard and universally accepted methodologies were used
for all electrophysiological examinations that were under-
taken across the participating institutions.'® This includes
the detailed reexamination of four affected individuals from
pedigree K2900, 1.2, 1.3, L5, and IL1 (see Fig 1). Ampli-
tude, duration, and area of the negative phase of the com-
pound muscle action potential (CMAP) were measured.

Peripheral Nerve Immunobistochemisiry of SIMPLE
Sciatic nerve immunchistochemistry was conducted in dupli-
cate on postmortem tissue samples obtained from unaffected
individuals by LifeSpan BioSciences (http://www.Isbio.com/).
Subject 1 was a 54-year-old woman who died of a drug over-
dose. Subject 2 was a 74-year-old man who died of respira-
tory failure. The analysis was performed with a commercial
murine monoclonal antibody (Ab) to SIMPLE (Transduc-
tion Labs, San Diego, CA)" and a murine monoclonal Ab
to PMP22 (NeoMarkers, Fremont, CA). To specifically
identify Schwann cells, we stained with the anti-PMP22 Ab.
A concentration of 2.5pg/ml was found to provide the high-
est signal-to-noise ratio on paraffin-embedded, formalin-fixed
tissues for both antibodies. To detect SIMPLE antibody, we
used a DAKO LSAB2 kit utilizing secondary goat anti—
mouse Ab and 2 DAKO DAB-+ Chromogen-substrate (Da-
koCytomation, Glostrup, Denmark) to produce a brown
precipitate. For PMP22 antibody detection, we used a Vec-
tor ABC-AP kit utilizing a Vector horse anti-mouse second-
ary Ab and a Vector Red substrate kit (Vector Laboratorics,
Burlingame, CA) producing a fuchsia precipitate.

In addition to staining for PMP22 or SIMPLE antibody
alone, double-staining experiments were performed sequen-
tially. Tissues were stained with CID31 antibody as a positive
control to ensure that tissue antigens were preserved and ac-
cessible for immunohistochemical analysis. Negative controls
consisted of performing the entire immunohistochemistry
procedure on adjacent sections in the absence of primary an-
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Fig 1. Six Charcot—Marie-~Tooth neuropathy type 1C (CMTIC) pedigrees examined in this study. Electrophysiological examination
of all affected members of pedigree K2900 was undertaken. Genotypes are shown for each pedigree necessary to determine of poten-
tial founder cffects were present to account Jor the common mutations G112S (A) and WI1I6G (B). Asterisks indicate truncated

pedigrees because they have been published previously in full '
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tibody. Slides were imaged with 2 DVC 1310C digital cam-
era coupled to a Nikon microscope.

Results

SIMPLE Mutation Analysis

We screened the three SIMPLE coding exons for mu-
tations in a total of 152 patients with various periph-
eral neuropathies. No mutations were detected in pa-
tents with CMT2 (n = 31), hereditary motor
neuropathy (n = 8), hereditary sensory neuropathy
(n = 6), intermediate CMT {n = 9), or unclassified
forms of CMT (n = 18). The three probands who
were found to harbor SIMPLE missense mutations
were from CMT type 1 pedigrees (n = 80). One mu-
tation was found in probands from the tier one group
of 17 type 1 CMT pedigrees (PN282) that were
Known to lack mutations in NEFL, PMP22, MPZ,
G/B1, EGR2, and PRX. A second mutation was iden-
tified from the Ukrainian pedigree (K1552) that was in
fact identical to that in pedigree PN282. The third
proband K1910 (IL1) with a SIMPLE mutation was
drawn from the ter three group of 50 CMT1 pro-
bands that had been screened only for the CMTIA
duplication (see Fig 1 and Table). In the PN282 and
the K1552 pedigrees, the ¢.334G~—>A transition leads
to a p.G1128 substitution in the SIMPLE protein. In
K1910, a ¢.346T->G transversion predicted to result
in a p.W116G substitution was present. In a pedigree
BUL102 (Bulgarian cohort) a ¢.222T—C transition
(1741) was identified (see Table) that was not present
in 100 normal chromosomes. Reverse transcription

PCR analysis did not show any alternately spliced
products (data not shown). The two missense muta-
tions p.GG112S and p.W116G have been described pre-
viously,"> and the clinical features of patients with
SIMPLE mutations are summarized in the Table.

Haplotype Segregation Analysis

Pedigrees  segregating  the ¢.334G—A  mutation
(p-G112S) were of English (K1551), Ukrainian
(K1552), and Belgian (PN282) descent. To test for a
possible founder effect, we determined haplotypes with
a series of markers spanning a distance of approxi-
mately 5¢M including the SIMPLE locus on chromo-
some 16p13.1."7 For each pedigree (K1551, K1552,
and PN282), the disease-linked haplotype differed,
suggesting that no founder haplotype was present (see
Fig 1). Two pedigrees (K2900 and K1910) with a
¢.346T>G mutation (p.W116G) were both of English
origin. The disease-linked haplotypes in these two ped-
igrees were different, indicating that no founder was
present (see Fig 1).

Immunohistochemistry of SIMPLE in Sciatic Nerve

Antibody staining was performed in duplicate using
autopsy samples from two unrelated individuals. In the
sciatic nerve, staining for SIMPLE antibody was posi-
tive in Schwann cells (Fig 2A). PMP22 antibody was
used as a marker for Myelinating Schwann cells (see
Fig 2B)." Double labeling with antibodies to SIMPLE
and PMP22 showed distinct PMP22 staining of myelin
(red) and SIMPLE staining of associated peripheral

Table 1(A). Clinical and Electrophysiological Features in Seven Charcot—Marie-Tooth Neuropathy Type 1C Pedigrees

Muscle Weakness® Muscle Atrophy”

Age at
Onset Initial Lower Upper Lower Upper
Pedigree N (range) Symptoms Limbs Limbs Limbs Limbs
Mutation

PN282 5 112§ 3 yr 1o Pes cavus o/++ 0/ ++ 0/++ 0/ + +

adult
K1551 15 1128 Child- Weak feer + - + e A f o

adolescent
K1552 3 112§ 12-15 yr Unable heel 0/ + 0 0o/ + 0

walk/pes
K2900 4 116G 41 (10-58) Pes cavus -+ + + +
K1910 1 116G 6 yr Abnormal + + + + + + +
K1550 10 115N Childhood Weal feet A A4 + e b +
BUL102 1 Polymorphism 7 yr Pes cavus + -+ + + 4 A+
1741

*Muscle weakness/Atrophy (0 = none; + = mild, ++ = a moderate, +++ = significant)
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nerve Schwann cell cytoplasm (brown) (see Fig 2C, D).
The SIMPLE antibody staining was positive in addi-
tional cell types, such as adipocytes (see Fig 2F), mast
cells, endothelium, and vascular smooth muscle (data
not shown). SIMPLE antibody staining was minimal
or completely absent from adipocytes or fibroblasts,
whereas PMP22 staining was, as expected, absent from
all the above cell types except Schwann cells (eg, see
Fig 2F). The same staining pattern was observed in
both autopsy samples.

Electrophysiological Findings

A total of 12 motor and eight sensory nerves were re-
tested in all four affected family members from pedi-
gree K2900 (see Fig 1)."” Sensory nerve action poten-
tials could not be elicited in the lower limbs of three
patients. A moderately to severely reduced sensory
nerve conduction velocity (SNCV) of 31.0m/sec was
noted for the sural nerve in the remaining patient.
Moderately to severely reduced SNCVs of 35.5 *
2.6m/sec {standard error mean) were obtained for the
median nerves. No values were obtained for motor
nerve conduction velocity (MNCYV) in the lower limbs
of two patients. Moderate to severely reduced MNCVs
of 27.0 = 0.0 and 25.0 = 1.0m/sec were noted in the
distal and proximal segments, respectively, for peroneal
nerves and of 27.5 * 0.5m/sec for tibial nerves. Mild
to moderately reduced MNCVs were scen in the me-
dian nerves (39.8 * 3.0m/sec). Based on published cri-
teria,”**' abnormal temporal dispersion of the CMAP
was noted in the proximal segments of the peroncal

and tibial nerves of one patient and the tibial nerve of
another (Fig 3).

Discussion

In this report, we found that SIMPLE is present in
Schwann cell cytoplasm. We also show SIMPLE pro-
tein is present in several cell types (eg, endothelial,
mast cells, and vascular smooth muscle cells) seen in
the postmortem tissues, a fact that is in agreement with
the previous demonstration of ubiquitous SIMPLE
gene expression from nearly all tissues examined.'*??

A total of seven CMT1 pedigrees with SIMPLE mu-
tations have now been identified, including six mis-
sense mutations represented by only three particular
substitutions (p.G112S, p.-T115N, and p.W116G).
Our haplotype analysis (see Fig 1) suggests that no
founder effect contributed to these high-frequency mis-
sense mutations. Furthermore, the clustering of the
mutations suggests this domain plays a critical role in
CMTI1C.

A total of 38 patients with diagnosed CMT1C were
examined. For the subset of six CMT1C pedigrees rep-
resenting three SIMPLE missense mutations (see Ta-
ble), a uniform clinical pattern typical of CMT1 is
present. Although few patients with CMTIC have
been examined to make 2 definitive comparison,
CMTIC  patients appear indistinguishable from
CMTI1A and meet widely accepted criteria for CMT1
including distal muscle weakness and atrophy, de-
pressed deep tendon reflexes, and sensory impair-
ment.”? The clustering of mutations seen in CMT1C

Table 1(B).
NCV
Reflexes® Motor (SD) (m/sec)
Sensory
Pedigree Loss"  Upper  Lower  Pes Cavus Other symproms Median Ulnar Peroneal
PN282 +/++ 1410 1+/0  Yes NA 253 (1.6)  16.5(0.6)
n=>5 n=>5
K1551 + 1+ 0/1+4 Yes Nerve hypertrophy hand tremor 258 (9.0)  25.3(6.0) 21 (3.0)
n = 12 n=8§ n=>5
K1552 +H++ 1+ 24 01+ Yes lumbago, spondylolistesis 23.4 NA 17
K2900 A+ I+ 1+ Yes 39.8(6.0) NA 27.0 (0.0)
n = 4 n=2
K1910 + -+ 1+ 0 Yes 15 15 7.5
K1550 + 0 0 Yes Nerve hypertrophy 17.3(2.0)  16.7(1.0) 185 (5.0)
n =4 n=3 n =5
BULIO2 | ++ 1+ 0 Yes 38.8 43.7 31.5
"Scnsory loss (0 = none; + = mild, ++ = a moderate)
Reflexes (0 = absentt 1+ = reduced, 24+ = normal, 3+ = hyperactive)

NA = not available.
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Fig 2. Immunobistochemistry was performed in duplicate on tissue obtained Jrom a S4-year-old woman who died of a drug over-
dose. Panels A to F depicr immunohistochemistry staining for PMP22 antibody (red) and SIMPLE antibody (brown) as labeled.
Scale bars (bottom lefé corners) = 10uM in A, B. E, and F and 2uM for C and D. The staining pattern for the two proteins is
quite different, with a more diffuse pattern evident for SIMPLE (A), and the punctate myelin ring structures seen (marked by ar-
rowheads) for both axon crosssections or logitudinal sections seen Jor PMP22 (B). Panels C and D are nerve cross-sections. Arrow-
heads highlight the distinct PMP22 staining demarcating myelinated axons. Open arrows indicate the polarized cytoplasm of a
Schwann cell in cross-section. Panels E and F show that SIMPLE is present in the cytoplasm of a adipocyte cell from nerve section,

whereas PMP22 staining is clearly absent.

may account for the apparent tight phenotypic spec-
trum that we have thus far observed for CMTIC.
Only pedigree K2900 with the p.W116G mutation
had a broad age of onset that often is seen in CMT1A
pedigrees (see Table). In the CMTIC pedigrees that
we have examined there is 100% penetrance as deter-
mined by slowed nerve conduction velocity, another
feature shared with CMTI1A.

Only one mutation (p.G1128; PN282) was found in
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our most stringent category of 17 CMT1 probands
previously excluded for mutations in the NEFL,
MTMR2, GDAPI, PMP22, MPZ, CX32, PRX, and
EGR2 genes. This suggests that SIMPLE mutations
may be at a relatively low frequency in CMT1 patients.
No SIMPLE mutations were observed in other neurop-
athies, yet too few patients have been observed to draw
any firm conclusions currently.

Despite the fact that SIMPLE is ubiquitously ex-
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Fig 3. Temporal dispersion in Charcot—Marie—Tooth neuropathy type 1C (CMTIC). Peroneal (A) and tibial (B) motor nerve
recordings from the extensor digitorum brevis and abductor hallicus muscles, respectively, from two affected family members. Electri-
cal stimulation was applied ar a level greater than 20% above that needed to produce a maximal compound muscle action poten-
tial (CMAP) amplitude. Note the marked prolongation of the CMAP duration proximally for both nerves, as well as amplitude

reductions. The area is not reduced significantly.

pressed, the clinical presentations observed so far are
restricted to the peripheral nervous system. One possi-
ble explanation stems from the acute sensitivity of
Schwann cells to overexpression and/or misfolding of
proteins. It is well established that CMT1 can result
simply from an overexpression of PMP22,** a protein
that is highly expressed in Schwann cells. PMP22 is
difficult to correctly fold, which is demonstrated by the
fact that 80% of newly synthesized PMP22 is rapidly
degraded.”® Schwann cells may be under particularly
high protein turnover burden, such that, when chal-
lenged by a defect in the role SIMPLE putatively plays
in the lysosomal degradation pathway, pathological fea-
tures resule. Given that there is expression of SIMPLE
in brain and spinal cord, it is possible that mutations
in SIMPLE could lead to central nervous system demy-
elination. Autosomal dominant syndromes of central
nervous system leukodystrophies have been described
and represent targets for possibly having mutations in
SIMPLE*~%8

The results of the NCV studies showed temporal
dispersion in two of four affected individuals of pedi-
gree K2900, representing 25% (3/12) of all motor
nerves tested, a phenomenon not typically seen in pa-
tients with CMTT, with the exception of recently iden-
tfied missense mutations of the MPZ gene.” In addi-
tion, upper limb MNCVs were significantly higher
than those in the lower limbs, some even greater than
40m/sec. Other electrophysiological studies of patients
with CMT1 have emphasized uniformity of conduc-

tion slowing and the absence of segmental amplitude
reductions or temporal dispersion.™

Although the function of SIMPLE is unknown, the
subcellular localization and putative domains present in
SIMPLE suggest that it may have a role in ubiquitin-
mediated lysosomal degradation. Interestingly, both
Nedd4 and TSGI0I are recruited by retroviral gag
protein L domains for use in viral budding from the
plasma membrane, a process topologically equivalent to
budding into the lumen of the endosome during MVB
formation.” It may be that SIMPLE plays a similar
role of recruiting these factors to sites of MVB forma-
tion, taking advantage of the putative membrane asso-
ciation domain to anchor these functions to specific
subcellular locations and thereby facilitate the sorting
of proteins along this pathway to the lysosome.
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