Charcot-Marie-Tooth 1A: Heterozygous T118M Mutation over a CMT1A Duplication Has No Influence on the Phenotype

P. Seeman, R. Mazanec, T. Marikova, and B. Rautenstrauss

Department of Child Neurology, Department of Neurology, Department of Biology and Medical Genetics, Second School of Medicine, Charles University Prague, V uvalu 84, 150 06 Prague 5, Czech Republic
Institute of Human Genetics, University Erlangen, Schwabachanlage 10, 910 54 Erlangen, Germany

INTRODUCTION

A tandem duplication of 1.5 Mb in chromosome 17p11.2-12 comprising the peripheral myelin protein gene (PMP22) is found in about 70% of Charcot-Marie-Tooth type 1 (CMT1) disease patients. A reciprocal deletion of the same region is found in 86% of patients with hereditary neuropathy with liability to pressure palsies (HNPP). Pathogenic point mutations of a dominant character were also described in PMP22, as well as in other myelin genes: Cx32, PMP22, or EGR2. Roa et al. first in 1993 and later Bhatke et al. reported the T118M mutation in PMP22 and assumed its recessive character because it didn’t produce any signs of neuropathy in heterozygous status over a wild-type allele, but it was found in a severely affected CMT1A member of a HNPP family over a HNPP deletion. Later reports by Nellis et al. showed that the T118M is more likely a polymorphism than a pathogenic mutation.

We report here a CMT1A family where the typical 17p duplication was confirmed in three generations by a PCR-based method using seven microsatellite markers from the critical region as well as by Southern hybridization with probe pLR 7.8. Except for one female member of the youngest generation (Nr. 53), all five other members of this family (Nr. 51, 52, 54, 206, and 141) carrying a duplication have a very mild phenotype. To clear the severe phenotype of this individual, we sequenced the PMP22 gene in this family. Surprisingly, we did not find the T118M mutation in the patient (Nr. 53), as expected, but found it in her subjectively and clinically only very mildly affected mother (Nr. 51), carrying a CMT1A duplication on her paternal chromosome 17. T118M was inherited from her mother (Nr. 141) and also detected in one other healthy member of the family (Nr. 219).

REFERENCES

RESULTS

We investigated 11 persons in three generations of a Charcot-Marie-Tooth 1A family on the molecular genetic level. Eight of them were also examined in detail on the clinical neurological level and by electromyography (EMG). Six persons (Nos. 140, 51, 52, 53, 54, and 206) (Fig. 1) in three generations were found to carry a typical CMT1A duplication. The duplications were confirmed by two independent methods using a set of seven polymorphic microsatellite markers from the critical CMT1A/HNPP region as well as Southern blot analysis after EcoRI/SacI restriction digestion. All duplication carriers and only duplication carriers showed a severely decreased nerve conduction velocity (NCV) of under 25 m/sec.

Because of the more severe phenotype of a member of the youngest generation (No. 53), the PMP22 gene was sequenced. A previously reported mutation T118M in the heterozygous state was found in three members of oldest and middle generations (Nos. 141, 219, and 51) (Fig. 2). Twice the mutation was detected over a normal wild-type “C” allele (Nos. 141 and 219) but once over a CMT1A duplication (No. 51). Both carriers of only the T118M (Nos. 141 and 219) didn’t complain about any subjective neurological problems. Neurological examination of person No. 141 as well as an EMG didn’t show any signs of polyneuropathy. The second confirmed carrier of only T118M (No. 219) didn’t agree with the EMG examination. The carrier of the T118M over a CMT1A duplication (No. 51) didn’t differ in clinical or EMG findings from her sister (No. 206), who carried only a duplication without T118M. Both these women are clinically almost unaffected and didn’t complain about any subjective neurological problems, but both were found to have NCVs that were severely decreased to the same level of 21–23 m/sec.

Our observation shows further evidence that T118M “exchange” is not a real recessive mutation, but rather a polymorphism that has neither influence on clinical nor on electrophysiological phenotype in CMT.

DISCUSSION

We identified an unusual family, which demonstrates segregation of two different mutations involving the same gene: a previously reported point mutation in the PMP22 gene and a CMT1A duplication. Both mutations were confirmed by two independent detection techniques.

At least three members (Nos. 50, 141, 219) of a CMT1A family carry a point mutation T118M in the PMP22 gene. The CMT 1 phenotype segregated together with the CMT1A duplication (Nos. 140, 51, 52, 53, 54, and 206) but not with the T118M point mutation. The heterozygous carriers of a single T118M mutation over a wild-type, nonduplicated allele (Nos. 141 and 219) didn’t show any signs of peripheral neuropathy even at the higher age of 74 years. This observation is consistent with previous reports by Nelis and Baitke, which both have found the T118M in HNPP families. There are no reports about any cases with T118M over wild-type allele that showed any signs of peripheral neuropathy up to now.

Individual number 51 carries a T118M over a CMT1A duplication. Neither phenotypically nor electrophysiologically have we found any positive or negative effect of T118M over the CMT1A duplication in comparison to those who carry only a duplication (No. 51 versus No. 206). The T118M alone over a wild-type, nonduplicated allele have not resulted in any signs of peripheral neuropathy in any of the carriers of our family. It is very likely that there are many more T118M carriers in this family because one female carrier (No. 219) has five adult children who themselves have further children. But there are no clinical signs of neuropathy observed or reported in that part of family, a finding that contributes to the theory of a harmless character for T118M.
FIGURE 2. Sequence analysis of PMP22 exon 4 region in persons 141, 51, and 53. Note the heterozygous signal "C"/"T" of the same intensity in the only T118M carrier, 141 (G), in contrast to case 51 with T118M over the CMT1A duplication (M), where the "C" signal is of double intensity compared to the "T" signal. This is because of the 2:1 ratio due to the duplication. Individual Nr. 53 (C), who carries only the duplication, has the homozygous, wild-type "C" signal.

The speculation that T118M over the duplication could make the phenotype milder by means of altering a third, supernumerary copy of PMP22 could not be confirmed.

Should a genetic counselor recommend genotyping for T118M in the partner of a T118M heterozygous carrier if the effect on the phenotype of T118M in the homozygous state is not known? Only the identification of a T118M homozygous individual, who can be confirmed to be either healthy or affected may reliably solve the nature of this mutation and this discussion.

ACKNOWLEDGMENTS

Supported by JGA MH Czech Rep. grant nr. M3-3 and by DFG.

REFERENCES


[Note added in proof: Recently, the youngest sister of individuals 141, 220, and 219 (indicated by ? in Fig. 2) was also found to carry the T118M mutation.]