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Mutations in the SPTLC2 Subunit
of Serine Palmitoyltransferase Cause
Hereditary Sensory and Autonomic Neuropathy Type I

Annelies Rotthier,1,3,14 Michaela Auer-Grumbach,4,14 Katrien Janssens,1,3,14 Jonathan Baets,2,3,5

Anke Penno,6,7 Leonardo Almeida-Souza,1,3 Kim Van Hoof,1,3 An Jacobs,1,3 Els De Vriendt,2,3

Beate Schlotter-Weigel,8 Wolfgang Löscher,9 Petr Vondrá�cek,10 Pavel Seeman,11 Peter De Jonghe,2,3,5

Patrick Van Dijck,12 Albena Jordanova,2,3 Thorsten Hornemann,6,13 and Vincent Timmerman1,3,*

Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal

sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated

with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However,

different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known

subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three

heterozygousmissensemutations in the SPTLC2 subunit of SPT in four families presentingwith a typical HSAN-I phenotype.We demon-

strate that these mutations result in a partial to complete loss of SPTactivity in vitro and in vivo. Moreover, they cause the accumulation

of the atypical and neurotoxic sphingoidmetabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and

enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an

increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I.
Introduction

Hereditary sensory and autonomic neuropathy type I

(HSAN-I [MIM 162400]) is an autosomal-dominant periph-

eral neuropathy presenting from the second decade of life

onwards, with prominent sensory involvement and a vari-

able degree of motor and autonomic dysfunction. The

neurological phenotype is often complicated by severe

infections, osteomyelitis, and amputations. On nerve

conduction testing, sensory nerve action potentials are

typically severely reduced to absent with relative preserva-

tion of nerve conduction velocities, classifying HSAN-I as

an axonal neuropathy.1–3

HSAN-I has been reported to be associated with muta-

tions in the first subunit (SPTLC1 [MIM 605712]) of the

enzyme serine palmitoyltransferase (SPT).4–6 The SPT

enzyme is a multisubunit structure, consisting of dimeric

subunits of SPTLC1 with either SPTLC2 (MIM 605713) or

SPTLC3 (MIM 611120).7 It is associated with the endo-

plasmic reticulum (ER), where it catalyzes the pyridoxal-

50-phosphate (PLP)-dependent condensation of L-serine

with palmitoyl-CoA. This is the first and rate-limiting

step in the de novo biosynthesis of sphingolipids
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(Figure S1, available online).8 Sphingolipids are essential

components of all eukaryotic cells, with both structural

and signaling functions. Mutations in a high number of

enzymes involved in sphingolipid metabolism are associ-

ated with neurodegenerative diseases,9 highlighting the

importance of sphingolipids in neuronal functioning.

The HSAN-I-causing mutations in SPTLC1 result in

a significant reduction of SPT enzymatic activity, but the

effects on total sphingolipid levels remain controver-

sial.5,10,11 It has been established, though, that the muta-

tions cause a shift in substrate specificity: the mutant

enzyme is able to incorporate, besides serine, alanine and

glycine to form, respectively, 1-deoxysphinganine

(1-deoxy-SA) and 1-deoxymethylsphinganine (1-deoxy-

methyl-SA) instead of sphinganine (SA).12,13 These alterna-

tive metabolites show pronounced neurotoxic effects on

neurite formation in cultured sensory neurons.13

Systematic screening of the knownHSAN genes in a large

series of patients yieldedpathogenicmutations inonly 19%

of probands,6 suggesting the involvement of other disease-

associated genes. Because of the identification of missense

mutations in the SPTLC1 subunit of SPT inHSAN-I patients,

we have sequenced the other SPT subunits SPTLC2 and
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SPTLC3 as functional candidate genes in a large HSAN

cohort. In this study,we report threeheterozygousmissense

mutations in SPTLC2 in four indexpatients presentingwith

HSAN-I. In in vitro assays as well as in a yeast complemen-

tation assay, we found that the mutations reduce SPT

activity. Additional characterization shows that the three

mutations cause the formation of the neurotoxic metabo-

lite 1-deoxy-SA in human embryonic kidney (HEK) 293

and patient lymphoblast cells. Together with previously

reported findings of HSAN-I-causing SPTLC1 mutations,

our results indicate that mutations in the two SPT subunits

cause a common HSAN pathomechanism.
Subjects and Methods

Subjects
For this study, we selected a group of 78 patients with hereditary

ulceromutilating and sensory neuropathies. Our inclusion criteria

were described previously in Rotthier et al.6 Prior to enrollment in

this study, all patients or their legal representatives provided

informed consent of participation to the treating physicians.

This study was approved by the local institutional review board.
Mutation Analysis
All DNA samples were amplified with the use of the whole-genome

amplification kit GenomiPhi V2 DNA Amplification Kit (GE

Healthcare). The coding regions and exon-intron boundaries up

to 100 bp up- and downstream of the exons of SPTLC2 and SPTLC3

were amplified via PCR with the use of oligonucleotide primers

designed with the Primer3 and SNPbox software tools.14,15 Primer

sequences are listed in Tables S1 and S2. Mutation screening was

performed by direct DNA sequencing of purified PCR fragments

with the use of the BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems) and separation on an ABI3730xl DNA

Analyzer (Applied Biosystems). The resulting sequences were

alignedandanalyzedwith thenovoSNP16 andSeqMan II programs.

Sequence variants were confirmed by repeated PCR on original

DNA samples and bidirectional sequencing.

Parenthood was tested with the use of 15 highly informative

short tandem repeats (STRs) distributed throughout the genome

(ATA38A05, D1S1646, D1S1653, D1S1360, D2S2256, D3S3037,

D4S2382, D4S3240, D7S509, D8S1759, D9S1118, D12S1056,

D12S2082, D16S2619, and GATA152H04). STRs were amplified

via PCR, and PCR fragments were loaded on an ABI3730xl DNA

Analyzer. Genotypes were analyzed with Local Genotype Viewer.
Cloning
The SPTLC2 cDNA (NM_004863.2) was amplified and cloned into

the Gateway entry vector pDONR221 (Invitrogen) with the use

of theprimersSPTLC2_attb1andSPTLC2_attb2. The SPTLC2muta-

tions were introduced by site-directedmutagenesis, with the use of

the following primers: SPTLC2_V359M_fw, SPTLC2_V359M_rv,

SPTLC2_G382V_fw, SPTLC2_G382V_rv, SPTLC2_I504F_fw, and

SPTLC2_I504F_rv. Primer sequences can be found in Table S3.

The constructs were recombined in the destination vector pEF5/

FRT/V5-DEST (Invitrogen), fusing the cDNA with a C-terminal V5

tag. All constructs were validated by sequencing. Stable cell lines

were generated with the use of the Flp-in host cell line HEK293

in accordance with the manufacturer’s instructions (Invitrogen).
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Yeast LCB2 together with its own promotor (700 bp upstream of

the start codon) and own terminator (450 bp downstream of the

stop codon) was cloned into the YCplac111 plasmid vector,

harboring a LEU2 gene. Mutations and an HA tag were introduced

by site-directed mutagenesis with the use of the primers

LCB2_HA_fw, LCB2_HA_rv, LCB2_V346M_fw, LCB2_V346M_rv,

LCB2_G369V_fw, LCB2_G369V_rv, LCB2_I491F_fw, LCB2_

I491F_rv, LCB2_K366T_fw, and LCB2_K366T_rv. Primer se-

quences are listed in Table S3.

Cell Culture Material and Conditions
HEK293 Flp-in cells were cultivated at 37�C and 5% CO2 in Dul-

becco’s modified Eagle’s medium supplemented with 10% fetal

bovine serum (FBS), L-glutamine, and penicillin and strepto-

mycin. Lymphoblastoid cell lines were cultured at 37�C and 5%

CO2 in Roswell Park Memorial Institute medium (RPMI) supple-

mented with 10% FBS, L-glutamine, sodium pyruvate, and peni-

cillin and streptomycin. All cell culture media and supplements

were from Invitrogen.

Lymphoblastoid Cell Lines
Total blood samples were mixed with 15 ml of Ficol Paque and

centrifuged for 10 min. After washing, lymphocytes were trans-

formed with Epstein-Barr virus and incubated at 37�C for 2 hr.

After centrifugation, the pellet was resuspended in 4 ml RPMI

complete medium þ 1% phytohaemagglutinin. Cells were seeded

in a 24-well plate and incubated at 37�C and 5% CO2 for a

minimum of 3 days. Cells were split and supplemented with fresh

medium as needed.

Yeast Complementation Assay
The YCplac111 constructs containing wild-type (WT) or mutant

LCB2 were transformed17 in a heterozygous LCB2 deletion strain

(BY4743), in which LCB2 has been replaced by a kanamycin-resis-

tance gene, and sporulated. The resulting tetrads were dissected for

the generation of haploid spores that lack endogenous expression

of LCB2, and they were grown on YPD medium with phytosphin-

gosine (15 mM; Avanti Polar Lipids) and 0.1% tergitol at 26�C. After
two days, replica plating to different growthmedia was performed,

namely YPD medium at 18�C and 37�C (yeast SPT mutants have

a thermosensitive growth phenotype18), synthetic minimal

medium without leucine (allowing for selection of transformed

spores), and YPD medium with geneticin (selection of LCB2-defi-

cient spores). For each construct, at least six tetrads were analyzed.

Unless specified otherwise, media and supplements were from

Sigma.

RNA Isolation and mRNA Analysis
Total mRNAwas purified with the RNeasy Mini Kit (Qiagen). DNA

inactivation was performed with the Turbo DNA-free Kit (Am-

bion), and cDNA synthesis was performed with Superscript III

First-Strand Synthesis System for RT-PCR (Invitrogen). Expression

of SPTLC2 (endogenous and construct) was analyzed with the use

of the following primer combinations: SPTLC2_Fw: 50-GAGTCCA

GAGCCAGGTTTTG-30 and SPTLC2_30UTR_Rv: 50-CTGAGGGAG

CACCAAAAAG-30 (for endogenous SPTLC2 expression) or V5_Rv:

50-GAGAGGGTTAGGGATAGGCTTAC-30 (for SPTLC2 construct).

Real-time quantitative PCR (RT-qPCR) reactions were performed

in triplicate with 10 ng cDNA in SYBRGreen Imix (Applied Biosys-

tems) and run on an ABI Prism 7900HT Sequence Detection

System (Applied Biosystems). Primers were validated for specificity
8, 2010



and amplification efficiency. RT-qPCR data were normalized

according to the method described by Vandesompele et al.19 The

relative expression levels were used to normalize the data of

the Fumonisin B1 block assay, the in vitro SPT activity assay, and

the 1-deoxy-SA quantification.
Fumonisin B1 Block Assay
This assay was performed as described in Penno et al.13 In brief,

Fumonisin B1 (Sigma) was added to the media of exponentially

growing cells in a final concentration of 10 mg/ml. As a negative

control, the SPT inhibitor myriocin (10 mg/ml, Sigma) was

added together with Fumonisin B1. 24 hrs after Fumonisin B1

addition, cells were washed twice with PBS, harvested, and

counted (Coulter Z2, Beckman Coulter). Next, the cells were

subjected to lipid extraction under basic conditions (see below).

Sphingoid bases were quantified by liquid chromatography-mass

spectrometry (LC-MS). Synthetic C17 sphingosine (Avanti Polar

Lipids) was added to each sample as an internal extraction

standard.
In Vitro Radioactivity-Based SPT Activity Assay
SPT activity was measured with the use of the radioactivity-based

assay described by Rütti et al.20 In brief, 400 mg total cell lysate,

50 mM HEPES (pH 8.0), 0.5 mM L-serine, 0.05 mM Palmitoyl-

CoA, 20 mM Pyridoxal-50-phosphate, 0.2% sucrose monolaureate

(all from Sigma), and 0.1 mCi L-[U-14C] serine (Amersham) were

mixed and incubated at 37�C. In the control reaction, SPT activity

was specifically blocked by the addition of myriocin (40 mM,

Sigma). After 60 min, the reaction was stopped and lipids were ex-

tracted according to the method of Riley et al.21 (see below).
Lipid Extraction and Hydrolysis
Total lipids were extracted from cells or plasma according to

the method of Riley et al.21 For acid hydrolysis, the dried lipids

were resuspended in 200 ml methanolic HCl (1N HCl/10M

water in methanol) and kept at 65�C for 12–15 hrs. The solution

was neutralized by the addition of 40 ml KOH (5M) and subse-

quently subjected to base hydrolysis, which was performed as

follows: 0.5 ml extraction buffer (4 vol. 0.125M KOH in methanol

þ 1 vol. chloroform) was added to the solution. Subsequently,

0.5 ml chloroform, 0.5 ml alkaline water, and 100 ml 2M ammonia

were added in that order. Liquid phases were separated by centri-

fugation (12,000 g, 5 min). The upper phase was aspirated and

the lower phase washed twice with alkaline water. Finally, the

lipids were dried by evaporation of the chloroform phase under

nitrogen gas and subjected to LC-MS analysis.

Extracted lipids were solubilized in 56.7% methanol-33.3%

ethanol-10% water and derivatized with ortho-phtalaldehyde.

The lipids were separated on a C18 column (Uptispere 120 Å,

5 mm, 125 3 2 mm, Interchim, France) fluorescence detector

(HP1046A, Hewlet Packard) followed by detection on an MS

detector (LCMS-2010A, Shimadzu). Atmospheric pressure

chemical ionization was used for ionization. Nonnatural C17

sphingosine (Avanti Polar Lipids) was used as internal standard.

Retention times were as follows: C17SO (internal standard):

6 min; sphingosine: 7.5 min; 1-deoxysphingosine: 9 min; 1-deo-

xymethylsphingosine: 10.5 min; SA: 10.5 min; 1-deoxymethyl-

SA: 13 min; 1-deoxy-SA: 13.5 min. MS data were analyzed with

the use of LCMS solution (Shimadzu) and MS Processor v.11

(ACD Labs).
The Americ
Statistics
The two-tailed unpaired Student’s t test was used for statistical

analysis. Error bars (standard deviation) and p values (Student’s

t test) were calculated on the basis of three independent experi-

ments.
Results

Mutations in SPTLC2 Are Associated with HSAN-I

The coding sequence and intron-exon boundaries of

SPTLC2 (chromosome location 14q24.3) were analyzed in

78 patients with HSAN who had been previously screened

and found to be negative formutations in the other known

HSAN genes (SPTLC1, RAB7 [MIM 602298], the complete

coding region of WNK1/HSN2 [MIM 605232], FAM134B

[MIM 613114], NTRK1 [MIM 191315], NGFB [MIM

162030], and CCT5 [MIM 610150]).6,22 We identified three

heterozygous missense mutations in four index patients,

for whom clinical and electrophysiological information is

summarized in Table 1 and Table 2. The mutations were

absent in 300 European control individuals.

A c.1145G>T sequence variation (p.G382V) was found

in two families (CMT-1044 and CMT-1117; Figure 1A).

The proband of family CMT-1117 presented with progres-

sive distal sensory loss and distal muscle weakness in the

lower limbs at the age of 38 yrs. The clinical presentation

was similar in a member of family CMT-1044. In addition,

this patient experienced dysesthesia in hands and feet and

developed osteomyelitis of a thumb. On the basis of haplo-

type analysis, these families were found to be unrelated

(data not shown).

A second heterozygous mutation (c.1075G>A

[p.V359M]) was discovered in an isolated patient (CMT-

747.I:1; Figure 1B). This patient was diagnosed with

HSAN after developing distal sensory dysfunction with a

foot ulceration necessitating amputation of a toe. No signs

of motor or autonomic involvement were noted.

The third mutation (c.1510A>T [p.I504F]) is a heterozy-

gous de novo mutation found in patient CMT-635.II:1,

who presented with an atypical early-onset sensorimotor

neuropathy complicated with ulcerations, osteomyelitis,

and anhidrosis (Figures 1C and 1D). Paternity testing was

performed for confirmation of parenthood.

Nerve conduction studies were performed in all patients,

revealing predominantly axonal sensorimotor neuro-

pathy; this diagnosis was confirmed by a sural nerve biopsy

in patient CMT-747.I:1 (Table 1 and Table 2).

No disease-associated sequence variants were identified

in the coding region or the intron-exon boundaries of

SPTLC3 (chromosome location 20p12.1).
SPTLC2 Mutations Are Associated with a Reduction

in SPT Activity

All three mutations in SPTLC2 target highly conserved

amino acids (Figure 2A), rendering it likely that they are

functionally important. We set out to investigate the effect
an Journal of Human Genetics 87, 513–522, October 8, 2010 515



Table 1. Clinical Features of Patients with SPTLC2 Mutation

Origin FH AO Pres. Sym. Dis. Dur. Ulc. Ost. Amp.
Sen.
Dys.

Aut.
Dys.

Dist.
Wkn. NCS Additional

Patient: CMT-747.I:1; Mutation: c.1075G>A (p.V359M)

Austria IC 52 yrs ulceration
and
amputation
of great R toe

27 yrs þ (toes) þ þ þ (distal LL) - - axonal/
intermediate
sensorimotor

sural nerve
biopsy:
axonal
neuropathy
in particular
of
unmyelinated
fibers

Patient: CMT-1044.I:2; Mutation c.1145G>T (p.G382V)

Germany D 37 yrs dysesthesia
and sensory
loss,
distal UL
and LL

35 yrs - þ
(thumb R)

- þ severe
distally
panmodal
with
dysesthesia

- þ UL
(0-3/5)
and LL
(0/5)

axonal/
intermediate
sensorimotor

scoliosis, focal
epilepsy; brisk
reflexes UL;
clenched hand
R > L

Patient: CMT-1117.II:1; Mutation: c.1145G>T (p.G382V)

Austria D 38 yrs sensory
loss
in feet

8 yrs - - - þ distally for
touch
and vibration

- þ LL
(2/5)

axonal
sensorimotor

-

Patient: CMT-1117.I:2; Mutation c.1145G>T (p.G382V)

Austria D ? asymptomatic ? - - - þ distally LL
for vibration

- þ LL
(5-/5)

axonal
sensorimotor

type 2 diabetes
(onset: 71 yrs)

Patient: CMT-635.II:1; Mutation c.1510A>T (p.I504F)

Czech
Republic

IC
(de novo)

5 yrs gait
difficulties,
foot
deformities

9 yrs þ (LL) þ - þ þ þ
(LL)

intermediate
sensorimotor

-

FH, familial history; AO, age at onset; Pres. Sym., present symptom(s); Dis. Dur., disease duration; Ulc., ulceration; Ost., osteomyelitis; Amp., amputation; Sen.
Dys., sensory dysfunction; Aut. Dys., autonomic dysfunction; Dist. Wkn., distal weakness; NCS, nerve conduction studies; IC, isolated case; R, right; L, left; LL,
lower limbs; UL, upper limbs; D, dominant; þ, present; -, absent; ?, unknown. For distal weakness, the Medical Research Council scale (0, 1-, 1, 1þ, ., 5-, 5)
is shown in parentheses, indicating the severity of muscle weakness.
of these mutations on SPT activity in stably transfected

Flp-in HEK293 cells. The Flp-in system ensures the stable

insertion of a single copy of the transgene at a specific

genomic location. In this way, moderate and equal expres-

sion of the different transgenes is obtained. The cells were

treated for 24 hr with Fumonisin B1, a mycotoxin that
Table 2. Nerve Conduction Studies in Patients with SPTLC2 Mutation

Median M Ulnar M Perone

Patient Age R/L Amp CV Amp CV Amp

Normal values R 4.0 49.0 4.0 49.0 3.0

CMT-747.I:1 79 yrs R 9.7 44.3 - - 0.1

L 8.4 51.0 - - 0.1

CMT-1044.I:2 72 yrs R 0.1 34.0 0.5 37.0 A

CMT-1117.II:1 44 yrs R 6.2 55.0 - - A

CMT-1117.I:2 72 yrs R 9.9 47.0 5.6 51.0 3.0

CMT-635.II:1 14 yrs R 3.8 25.0 2.9 50.0 A

L 2.0 29 2.1 53 A

M, Motor; S, Sensory; Age, age at clinical examination; Amp, amplitude of the ner
A, absent response; -, not measured; R, right; L, left. Italics indicate abnormal val
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blocks the de novo sphingolipid biosynthesis pathway

downstream of SPT23 (Figure S1). Because condensation

of palmitoyl-CoA and serine by SPT is the rate-limiting

step in the biosynthesis pathway, the resulting accumula-

tion of SA reflects the canonical SPTactivity (incorporation

of L-serine). Stable expression ofWT SPTLC2 resulted in an
al M Tibial M Median S Ulnar S Sural S

CV Amp CV Amp CV Amp CV Amp CV

41.0 3.0 41.0 7.0 46.0 2.0 47.0 1.0 44.0

35.7 - - A A - - - -

23.3 - - 0.9 35.2 - - - -

A A A A A A A A A

A A A A A 0.4 38.0 A A

42.0 - - - - - - 2.7 33.0

A A A A A A A A A

A A A - - - - - -

ve action potential (motor: mV; sensory: mV); CV, conduction velocity (in m/s);
ues.
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Figure 1. Missense Mutations in SPTLC2
Are Associated with HSAN-I
(A) Sequence trace files of the G382V
mutation in families CMT-1117 (proband
indicated by arrow) and CMT-1044.
(B) Isolated patient CMT-747.I:1 with the
V359M mutation.
(C) Patient CMT-635.II:1 carrying a de
novo I504F mutation.
(D) Severe ulcerations and deformation of
the foot of patient CMT-635.II:1 at the
age of 10 yrs.
Htz, heterozygous; WT, wild type.
8-fold increase in SA accumulation as compared to control

cells stably expressing green fluorescent protein (GFP).

This is in agreement with earlier reports, in which overex-

pression of WT SPTLC2 indeed leads to higher SPT

activity.24 Stable expression of the G382V mutant, on the

other hand, did not increase SA accumulation above basal

levels. The V359M- and I504F-expressing cells showed an

increase in SA accumulation, although far less pronounced

than that ofWT SPTLC2-expressing cells (Figure 3A). Thus,

the three mutations result in a partial to complete loss of

SPT activity.

The effect on canonical SPT activity was confirmed in

an alternative radioactive-based in vitro assay. Total lipids

were extracted from HEK293 cells stably expressing WT

or mutant SPTLC2 and incubated with 14C-labeled

L-serine, PLP, and palmitoyl-CoA, after which the incorpo-

ration of the radioactively labeled serine was measured

(Figure 3B). The results resembled those of the previous

assay. Stable expression of WT SPTLC2 caused a significant
The American Journal of Human Ge
increase in SPT activity, whereas the

expression of G382V failed to raise

SPT activity above basal levels. Ex-

pression of the V359M or I504F

mutant elevated SPT activity, but not

to the same extent as WT SPTLC2.

The relative increase in SPT activity

in V359M- and I504F-expressing cells

was more pronounced than in the Fu-

monisin B1 block assay (Figure 3A).

This difference could be explained

by the higher serine concentration

used in the latter in vitro assay in

comparison to the serine concentra-

tions present in the cell culture

medium during the former assay.

SPTLC2 Mutants Differentially

Affect In Vivo SPT Activity

in S. cerevisiae

To corroborate the loss of canonical

SPT activity in vivo, we expressed

the corresponding yeast mutants

(Figure 2A) in a heterozygous LCB2

deletion yeast strain (LCB2 is the
S. cerevisiae ortholog of SPTLC2) and performed a tetrad

analysis in order to obtain two haploid spores with and

two without endogenous LCB2. As expected, all four

spores grow at the permissive temperatures of 18�C,
regardless of whether they express WT or mutant LCB2.

At the restrictive temperature (37�C), spores with (residual)

SPT activity will be able to grow, whereas spores with no or

nonfunctional LCB2 will depend on the external addition

of phytosphingosine in order to generate phytosphingoli-

pids and grow.18 WT LCB2 was able to complement the

LCB2 deficiency, as apparent from the appearance of four

equally sized colonies in the absence of phytosphingosine

(Figure 4). In contrast, but analogous to the dominant-

negative LCB2 K366T mutation,25 yeast spores expressing

the G369Vmutation (corresponding to G382V in SPTLC2)

yielded only colonies when endogenous LCB2was present,

demonstrating the failure of this mutant to complement

LCB2 deficiency. The residual activity conferred by the

V346M and I491F mutants (corresponding to V359M
netics 87, 513–522, October 8, 2010 517



Figure 2. Conservation of Mutations among Species and Structural View of the Bacterial SPT Enzyme
(A) ClustalW multiple protein alignment of the SPTLC2 orthologues from human (Homo sapiens), mouse (Mus musculus), rat (Rattus
norvegicus), taurus (Bos Taurus), zebrafish (Danio rerio), fly (Drosophila melanogaster), baker’s yeast (Saccharomyces cerevisiae), and
Gram-negative bacteria with SPT activity (Sphingomonas paucimobilis).
(B) SPT structure of the Sphingomonas paucimobilis SPT homodimer (PDB ID: 2JGT) with the dimeric subunits represented in red and blue.
The highlighted amino acids (V246, G268, and G385) correspond to the amino acids (V359, G382, and I504) mutated in the HSAN-I
patients (see alignment in A).
and I504F, respectively, in SPTLC2) was sufficient to restore

growth at 37�C; this is in accordance with our biochemical

data.
Mutant SPT Shows Ambiguity towards Its Amino Acid

Substrate

A recent report shows that SPTLC1 mutations in HSAN-I

influence the substrate specificity of the SPT enzyme:

mutant SPT is able to metabolize L-alanine and to a lesser

extent glycine as alternative substrates. This results in the

formation of the atypical and neurotoxic sphingoid base

metabolites 1-deoxy-SA and 1-deoxymethyl-SA.12,13 The

accumulation of these metabolites in the peripheral nerves

was postulated to be the underlying cause of HSAN-I.13 To

study whether SPTLC2 mutations likewise affect the enzy-

matic affinity of SPT and cause a similar accumulation of

these alternative metabolites, we analyzed the sphingoid

base profile of HEK293 cells expressing the mutants.

In cells stably expressing WT SPTLC2, the amount of

1-deoxy-SA was similar to control cells (Figure 5A),

showing that an increase in SPT activity as such does not

alter substrate specificity. Expression of the mutants, on

the other hand, resulted in up to 20-fold higher 1-deoxy-

SA levels in comparison to control cells, the highest levels

in HEK cells stably expressing the G382V or I504F mutant

enzyme. The generation of 1-deoxymethyl-SA levels in

both HEK cells and lymphoblast cells was below detection

limits.

To validate whether the results obtained in the HEK

cells reflect the situation in HSAN-I patients, we measured

1-deoxy-SA levels in lymphoblast cell lines from two

HSAN-I patients carrying, respectively, the G382V and

I504F mutation. In both cell lines, accumulation of

1-deoxy-SA was observed when compared to unaffected
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family members or unrelated healthy control individuals

(Figure 5B). This finding is in agreement with our in vitro

results and, more importantly, shows that the accumula-

tion of 1-deoxy-SA could be physiologically relevant.
Discussion

We previously reported that only 19% of a cohort of 100

HSAN patients had mutations in the coding regions of

genes known to be mutated in HSAN, suggesting addi-

tional genetic heterogeneity.6 This was strengthened by

our recent identification of FAM134B mutations in

HSAN-II (MIM 613115) patients from this cohort.22

Because mutations in the first subunit of SPT were found

to be associated with HSAN-I,4–6 we screened the two other

subunits of SPT, SPTLC2 and SPTLC3, as functional

candidate genes in 78 patients with hereditary ulceromuti-

lating and sensory neuropathies. This cohort shows a wide

variability of clinical features and different modes of inher-

itance, but all patients share a progressive distal sensory

dysfunction. The functional candidate approach has

been proven to be valuable, especially in the case of rare,

debilitating disorders, in which small pedigrees preclude

the use of classical positional cloning. Althoughmutations

in SPTLC2 were previously excluded as a common cause of

HSAN-I,26 we still supported the strength of this gene as a

functional candidate gene for HSAN. This was based on the

reported effects of the SPTLC1 mutations, namely a reduc-

tion in SPT activity and the accumulation of atypical

sphingolipid metabolites; both effects could be envisaged

as resulting from mutations in the other SPT subunits as

well.

No disease-associated mutations were identified in the

third subunit of SPT (SPTLC3) in our HSAN cohort. It was
8, 2010



Figure 3. In Vitro SPT Activity Measurements of HSAN-I Associ-
ated SPTLC2 Mutants
(A) Fumonisin B1 block assay. SPT activity in HEK293 cells stably
expressing WT or mutant SPTLC2 is analyzed by measuring SA
accumulation after treatment with Fumonisin B1. Stable expres-
sion of WT SPTLC2 generates an 8.5-fold increase in SPT activity
(p ¼ 3.24 3 10�5), whereas the G382V mutant does not increase
SPT activity (p ¼ 0.18). The V359M and I504F mutations increase
the activity significantly (p ¼ 0.00063 and 0.00064, respectively)
but not to the same extent as WT SPTLC2. Enhanced GFP
(EGFP)-transfected cells served as control.
(B) Radioactivity-based SPT activity assay. SPT activity of HEK293
cells stably expressing WT or mutant SPTLC2 was determined by
measuring the incorporation of 14C-labeled L-serine in vitro.
Stable expression of WT SPTLC2 results in a significant increase
in SPT activity, whereas the expression of G382V fails to raise
SPT activity above basal levels. Expression of the V359M
or I504F mutant elevates SPT activity, but not as drastically
as WT SPTLC2. The right bars represent SPT activity in the pres-
ence of the SPT inhibitor myriocin (negative control; see
Figure S1).
CPM, counts per minute; SA, sphinganine. *** p < 0.001. Data are
represented as mean, with error bars representing standard devia-
tions. Error bars and standard deviation were calculated on the
basis of three independent experiments.

Figure 4. Genetic Complementation Test in S. cerevisiae by
Tetrad Dissection of a Heterozygous LCB2/lcb2::KanMX Strain
Complemented with Different YCplac111_LCB2 Constructs
WT LCB2 can complement LCB2 deficiency, as shown by the
appearance of four equally sized colonies on YPDmediumwithout
phytosphingosine at 37�C. The V346M (corresponding to V359M
in SPTLC2) and I491F (corresponding to I504F in SPTLC2) LCB2
mutants also rescue the absence of endogenous LCB2. However,
yeast transformed with the G369V (corresponding to G382V in
SPTLC2) or K366T (dominant negative) mutants yields only colo-
nies when endogenous LCB2 is present, demonstrating the failure
of these mutants to complement LCB2 deficiency.
previously suggested that SPTLC2 and SPTLC3, which are

isoforms, allow for the adjustment of SPT activity to

tissue-specific requirements for sphingolipid synthesis.24

Given the low expression levels of SPTLC3 in neuronal

tissue,24 SPTLC3 is indeed unlikely to have a role in neuro-

logical diseases. Although we cannot completely rule out

mutations in SPTLC3, we exclude mutations in this gene

as a common cause for HSAN.

In SPTLC2, we identified three missense mutations—

V359M, G382V, and I504F—in patients diagnosed with

HSAN-I. The patients carrying the V359M (CMT-747.I:1)
The Americ
and G382V (CMT-1117.II:1 and CMT-1044.I:2) mutations

had a very similar disease course, with adult onset of prom-

inent sensory dysfunction and variable motor involve-

ment. The mother of CMT-1117.II:1, CMT-1117.I:2, who

also carries the G382V mutation, presents with a mild

peripheral neuropathy that was noticed only upon clinical

examination. Because this patient was diagnosed with a

mild form of diabetes, the origin of the peripheral neurop-

athy in this patient is debatable. Of note, many inherited

peripheral neuropathies are associated with a very broad

phenotypic variability, both inter- and intrafamilial,

rendering it well possible that patient CMT-1117.I:2 is

indeed an asymptomatic carrier of this mutation. In our

opinion, this by no means casts doubt on the pathoge-

nicity of the mutation, given that we provided strong

functional evidence for its causative role in HSAN-I

(further discussed below).

The patient with the de novo I504F mutation was

phenotypically distinct, the most remarkable difference

being the onset of the disease in childhood. Moreover,

this patient also experienced autonomic dysfunction,

namely sweating disturbances. It is noteworthy that the

S331F mutation in SPTLC1 is also associated with an

atypical and early-onset HSAN-I phenotype.6 These two

observations clearly illustrate that the phenotypic spec-

trum of this rare disorder is broad and warrants the inclu-

sion of patients with an early disease onset (< 10 yrs) in

future screenings for SPTLC mutations. Furthermore, the

identification of a second gene for HSAN-I and the pres-

ence in our cohort of HSAN-I patients without mutation

in either of the two known genes demonstrate the genetic

heterogeneous nature of this disorder and call for a further

screening of functional candidate genes, such as the

recently identified regulatory interactors of SPT, the small
an Journal of Human Genetics 87, 513–522, October 8, 2010 519



Figure 5. SPTLC2Mutations Affect the Enzymatic Affinity of SPT
(A) Levels of 1-deoxy-SA in HEK293 cells stably expressing WT or
mutant SPTLC2 are measured after an acid and base hydrolysis
assay of the extracted lipids. Expression of WT SPTLC2 does not
change cellular 1-deoxy-SA levels (p ¼ 0.55), whereas all three
HSAN-I-associated mutants result in significantly elevated
1-deoxy-SA levels (p ¼ 0.0025 for V359M; 0.00093 for G382V;
0.00048 for I504F).
(B) 1-deoxy-SA levels in HSAN-I patient lymphoblastoid cell lines.
The two HSAN-I patients CMT-1044.I:2 (G382V mutation) and
CMT-635.II:1 (I504F mutation) show higher levels of 1-deoxy-SA
compared to the unaffected parents of CMT-635.II:1 and to two
unrelated control individuals. Unfortunately, no lymphoblast
cells were available of patient CMT-747.I:1 carrying the V359M
mutation.
*** p value < 0.001. SA, sphinganine. Data are represented as
mean, with error bars representing standard deviations. Error
bars and standard deviation were calculated on the basis of three
independent experiments.
stimulatory SPT subunits (ssSPT)27 and the ORMDL

proteins.28,29

The three disease-associated mutations identified in this

study target highly conserved amino acids residing in con-

served domains, possibly indicating functionally impor-

tant domains. In particular, the G382 residue is an active

residue in the putative PLP-binding domain of SPTLC2.30

A study by Gable et al.25 suggests that the known HSAN-I

associated SPTLC1 mutations (C133W, C133Y, V144D)

indirectly affect PLP binding by altering the geometry of

the PLP-binding site in the dimeric conformation. They

tested their hypothesis by mutating amino acids in the

putative PLP-binding domain in LCB2, the yeast ortholog

of SPTLC2. In support of their assumption, the mutations
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dominantly inactivated SPT activity, suggesting that muta-

tions in the PLP-binding domain of SPTLC2 could cause

a phenotype similar to HSAN-I caused by SPTLC1 muta-

tions. On the basis of these observations, together with

the reported decrease of SPT activity for HSAN-I-associated

SPTLC1 mutations, the effect of our SPTLC2 mutations on

SPT activity was not unexpected. Interestingly, however,

the threemutations have a differential effect on the canon-

ical enzymatic activity. In two independent in vitro assays,

the expression of G382V fails to raise SPT activity above

basal levels, whereas expression of the V359M or I504F

mutant confers limited SPT activity. This duality is also

observed in an in vivo assay: the yeast mutant correspond-

ing to G382V is unable to complement the absence of

endogenous LCB2, whereas the partial activity retained

by the two other mutants suffices to allow growth. It is

possible that the position of the affected amino acids

accounts for the differential effect of the mutations on

SPT activity: the structure of the bacterial (Sphingomonas

paucimobilis) SPT homodimer shows that the G268 residue

(corresponding to G382) resides in the putative interface

between SPTLC1 and SPTLC2, the catalytic domain of

SPT, whereas the other two mutated residues (V246 and

G385, corresponding to V359 and I504) are located on

the surface of the protein (Figure 2). Like WT SPTLC2

protein, mutant SPTLC2 colocalizes with the ER marker

calreticulin in SH-SY5Y neuroblastoma cells (data not

shown), rendering it unlikely that mislocalization of the

mutant protein causes the loss in SPT activity.

Heterozygous Sptlc2 knockout mice, who have only one

copy of SPTLC2, are not known to develop a neuropathy,31

rendering it unlikely that haploinsufficiency is sufficient to

cause the disease. Therefore, we set out to further charac-

terize the effect of the mutations on SPT properties.

Recently, the HSAN-I-associated mutations in SPTLC1

were found to cause the accumulation of the neurotoxic

metabolites 1-deoxy-SA and 1-deoxymethyl-SA. This is

due to a shift in substrate specificity of mutant SPT that

leads to the condensation of palmitoyl-CoA with alanine

and glycine, besides serine.13 Because these 1-deoxy bases

lack the C1 hydroxyl group (Figure S1), they can neither

be degraded nor be converted into complex sphingolipids

by the enzymes of the sphingolipid biosynthesis pathway;

hence, they accumulate in the cell. In our study we found

all three SPTLC2 mutations to be associated with elevated

1-deoxy-SA levels. Highest levels of the 1-deoxy bases

were found in G382V and I504F expressing cells; the levels

in V359M expressing cells were lower, but still significantly

increased in comparison to cells expressing WT SPTLC2.

This finding suggests that altered SPT substrate specificity

could contribute to the disease pathomechanism.

The exogenous addition of 1-deoxy-SA but not of SA has

been shown to be neurotoxic to cultured primary dorsal

root ganglia and, to a lesser extent, motor neurons: it

impairs neurite outgrowth and induces the retraction of

existing neurites, and this is associated with a disturbed

actin-neurofilament interaction.13 However, whether the
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same neurotoxic mechanisms occur when 1-deoxy-SA is

generated within the neuron is currently unknown. The

mouse model for HSAN-I, overexpressing the SPTLC1

mutation C133W, has highly elevated levels of the atypical

sphingoid bases in the sciatic nerves, whereas brain tissue

is devoid of these metabolites. This is reminiscent of the

pathology in HSAN-I patients, in which the peripheral

nervous system is affected and the central nervous system

spared, and suggests that these atypical bases could be key

in disease development. Interestingly, double transgenic

SPTLC1WT/C133W mice, overexpressing both WT and

mutant SPTLC1, produce levels of 1-deoxy-SA in the sciatic

nerve that are intermediary between levels in WT and

SPTLC1C133W mice, but they do not develop a peripheral

neuropathy.32 This suggests that this metabolite is toler-

ated to a certain extent in the sciatic nerve. Moreover,

the study of Penno et al.13 of seven HSAN-I patients

carrying the SPTLC1 C133W mutation shows a tendency

of levels for 1-deoxy-SA to be higher in patients with a

more severe clinical phenotype. This is in contrast with

our study, in which the levels of 1-deoxy-SA do not seem

to correlate with the severity of the clinical phenotype.

The patient carrying the I504F mutation and showing

high 1-deoxy-SA levels presented with an atypically early

onset of disease, but the patients carrying the G382V

mutation, which is likewise correlated with strongly

increased 1-deoxy-SA levels, had an adulthood disease

onset. Possible explanations for this discrepancy could be

the age of the patient, the disease stage, or the existence

of hitherto unidentified genetic or environmental factors.

Sphingolipids are important structural components of

eukaryotic membranes, but they are also considered to be

key bioactive molecules. Together with cholesterol, they

form the major constituent of the lipid rafts, regions

within the plasma membrane important for cellular sig-

naling. In neurons, they are involved in neurotrophin

signaling, axon guidance, and synaptic transmission.33

Sphingolipids and sphingoid bases are implicated in

various disease processes such as cancer pathology, inflam-

mation, and diabetes,34,35 indicating their role in a myriad

of processes in the cell. With regard to the nervous system,

it is of note that mutations in a high number of enzymes

involved in sphingolipid metabolism are associated with

neurodegenerative diseases.9 With this study, the impor-

tance of the sphingolipid pathway in neurological func-

tioning is once again being stressed.

In conclusion, by using the functional candidate gene

approach we identified mutations in SPTLC2 to be

associated with HSAN. Our finding extends the genetic

variability in HSAN-I and enlarges the group of HSAN

neuropathies associated with SPT defects. We further

show that HSAN-I is consistently associated with an

increased formation of the neurotoxic 1-deoxy-SA, sug-

gesting a common pathomechanism for HSAN-I. The

elucidation of 1-deoxy-SA function and HSAN-I pathology

will further broaden our knowledge of the ever-expanding

field of sphingolipids.
The Americ
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Supplemental data include one figure and three tables and can be
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the European Commission (LSHM-CT-2006-037631).

Received: July 29, 2010

Revised: September 15, 2010

Accepted: September 16, 2010

Published online: October 7, 2010
Web Resources

The URLs for data presented herein are as follows:

Clustal Multiple Sequence Alignment, http://www.clustal.org

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/
Accession Numbers

The GenBank accession numbers for the human SPTLC2 and

SPTLC3 sequences reported in this paper are NM_004863 and

NM_018327, respectively. The GenBank accession number for

the LCB2 (S. cerevisiae) sequence is NM_001180370.
References

1. Dyck, P.J., Chance, P., Lebo, R., and Carney, J.A. (1993).

Hereditary motor and sensory neuropathies. In Peripheral

neuropathy, Third Edition, P.J. Dyck, P.K. Thomas, J.W.

Griffin, P.A. Low, and J.F. Poduslo, eds. (Philadelphia:

W.B. Saunders), pp. 1065–1093.

2. Auer-Grumbach, M. (2004). Hereditary sensory neuropathies.

Drugs Today (Barc) 40, 385–394.

3. Verpoorten, N., De Jonghe, P., and Timmerman, V. (2006).

Disease mechanisms in hereditary sensory and autonomic

neuropathies. Neurobiol. Dis. 21, 247–255.

4. Bejaoui, K., Wu, C., Scheffler, M.D., Haan, G., Ashby, P., Wu,

L., de Jong, P., and Brown, R.H., Jr. (2001). SPTLC1 is mutated

in hereditary sensory neuropathy, type 1. Nat. Genet. 27,

261–262.
an Journal of Human Genetics 87, 513–522, October 8, 2010 521

http://www.cell.com/AJHG/
http://www.clustal.org
http://www.ncbi.nlm.nih.gov/Omim/
http://www.ncbi.nlm.nih.gov/Omim/


5. Dawkins, J.L., Hulme, D.J., Brahmbhatt, S.B., Auer-Grumbach,

M., andNicholson,G.A. (2001).Mutations inSPTLC1, encoding

serine palmitoyltransferase, long chain base subunit-1, cause

hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312.

6. Rotthier, A., Baets, J., De Vriendt, E., Jacobs, A., Auer-
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